
Acta Technica 62 (2017), No. 5A, 867�874 c© 2017 Institute of Thermomechanics CAS, v.v.i.

Improved simulated annealing
algorithm based state of charge

determination for LiFePO4 batteries in
electric vehicles

Yanqing Shen2, 3

Abstract. The accurate online estimation of available capacity remained in electric vehicles
is challenging owing to extensive computational requirement, measurement noise and convergence
issues. Added with the search limitation from state space equations and �rst order low pass
�lter, this paper presents an improved simulated annealing algorithm based method to evaluate
the cell state, where a combined state space model is employed to simulate battery dynamics. The
method is veri�ed by the experiment data collected from battery test system. Results illustrate that
the proposed improved simulated annealing algorithm based method estimates the cell remained
capacity with great performance and is little in�uenced by initialization, current disturbance and
measurement noise.
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1. Introduction

Being low cost, safety, longevity and environmental compatibility, LiFePO4 bat-
teries are used extensively in electric vehicles (EVs) and hybrid electric vehicles
(HEVs). To ensure the safety and functional capabilities of HVs and HEVs, it is
a vital issue for the battery management systems to realize the precise online esti-
mation of available capacity [1]. Failure cases may result in reduced performance,
operational damage and even disastrous outcome.

The state of charge (SOC) of LiFePO4 battery is usually estimated by a method
based on the characteristics of the battery because it is incapable of being measured

1Acknowledgement - Yanqing Shen, network_hawk@126.com. This research work was supported
by the Chongqing Municipal Education Commission (KJ1603005), China.
2Workshop 1 - Department of Automation, Chongqing Industry Polytechnic College, Yubei

401120, China
3Corresponding author: Yanqing Shen; e-mail: network_hawk@126.com

http://journal.it.cas.cz

network_hawk@126.com


868 YANQING SHEN

directly. Many di�erent methods have been developed for that. Electrochemical
model is usually impractical to be used for online estimator because of its great
quantity of computation [2]. Electrical circuit models (ECMs) are widely utilized
for battery state determination owing to their relatively simple mathematical struc-
ture. Kalman �lter is a most common selection for accessing cell SOC. It operates
recursively on streams of noisy input data to produce a statistically optimal estimate
of the underlying system state. Reference [3] employs two di�erent battery parame-
ter identi�cation methods and presents an enhanced closed loop extendKalman �lter
(EKF) estimator to realize an accurate SOC estimation. Reference [4] adopts EKF
to update the parameters of battery pack by real-time measured data and unscented
Kalman �lter (UKF) to estimate the SOC of battery pack. Nevertheless, the EKF
[5] and UKF [4, 6] based methods are in�uenced greatly by the speci�ed original
value especially in a nonlinear system. If a given initial state is far away from the
real one, the prediction accuracy will decline and the convergence will even be lost
in some cases.

Particle �lter (PF) based methods use random particles satis�ed with speci�ed
distribution to represent the possible SOC, and get a set of particles with associated
importance weights to represent the posterior probability density. [7] advances an
unscented PF based degradation model to predict the remaining useful life of cell. [8]
proposes an improved adaptive PF based online adaptive estimator to evaluate SOC,
which is capable of eliminating the estimation error from the battery degradation
and initial state errors. Being short of e�ective search mechanism, normal PF based
methods do not guarantee achieving a global optimal value after a great quantity of
computation.

To settle the existing issues on battery SOC estimation, this paper puts forward
an improved simulated annealing (SA) based method, which occupies the advantage
of global optimization, to predict the cell SOC. It is organized as follows. This pa-
per �rst employs a combined state space model to simulate battery dynamics. Then
an improved simulated annealing based method is used to determine the available
capacity of LiFePO4 batteries at di�erent discharging pulse current. Finally re-
sults of lab tests on 18650 size cells with pulse discharging current, contrasted with
traditional prediction method, are presented.

2. Battery Modeling

Since SOC is incapable of being detected directly, an accurate cell model about
SOC must be set up �rst for LiFePO4 batteries.

Fig. 1. Electrical circuit model of LiFePo4 batteries
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2.1. Electrical circuit model

An e�ective ECM may simulate the dynamic behavior of cell and provides an
insight into its internal mechanism. A two-order electrical circuit model with two
controlled sources is displayed in Figure.1. The controlled current source is regu-
lated by the battery �owing current (i) and used to model the cell behavior among
SOC, runtime and open circuit voltage. It adopts self-discharge resistor (Rs)to
characterize the self-discharge energy loss and full-capacity capacitor (CCap) to rep-
resent the available capacity stored in the battery. The controlled voltage source
incorporates three parts: open-circuit controlled voltage (Voc), ohmic resistance Ro

and the shaded RC parallel network which incorporates electrochemical polariza-
tion resistance (Rpa),electrochemical polarization capacitance(Cpa), concentration
polarization resistance (Rpc) and concentration polarization capacitance(Cpc). The
model characterizes the transient response and polarization e�ect of cell. Neverthe-
less, it does not describe the nonlinear relation among open-circuit voltage, SOC,
and charging or discharging curren.

2.2. Combined state space model for LiFePO4 batteries

Based on the electrical circuit model, experience equations and coulomb counting
method [9], this paper achieves the cell state x(k) at kth sample time with a discrete
combined state space model [10],

E = E0 (1− α (1/2− ξ)) , (1)

where Capis the cell nominal capacity, V is the terminal voltage and Ki(i =
0, 1, 2, 3, 4) is the coe�cient,∆t is the speci�ed small sampling period, ηis the cell
coulombic e�ciency di�ering with current i (assumed positive for discharge, negative
for charge) and cell temperature T.

The model for LiFePO4 batteries has the advantage of re�ecting the e�ect of SOC,
internal resistance and the polarization e�ect resulted from RC network. Moreover,
it is simple for understand and realization, and provides an insight into the internal
mechanism of battery.

2.3. Model parameters identi�cation

Given training data set, parameters (K0,K1,K2,K3,K4, Ro) in experience model
(1) are calculated with recursive least square (RLS) regression algorithm. The ap-
propriate time constant of polarization(τpa = RpaCpa, τpc = RpcCpc)needs to be
given in advance based on the battery characteristics. Then Simulated Annealing
satis�ed with the loss function (2) is used to access the optimal values of the left
parameters, such as Ro, Rpa, C pa, Rpc, C pc.

h(ξ) = h0 [1− (1− β1) (ξ + 1/2)] · [1− (1− β2) (η + 1/2)] , (2)

whereV (k)∗ is the measured cell terminal voltage at the kth sample time.
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3. Improved simulated annealing algorithm based SOC
estimation method

The established combined state space model for LiFePO4 batteries (1) is a time-
varying nonlinear equation. The coming approach aims at accessing the optimal
value satisfying with (2) using those measured value, such as i(k), T (k) and V (k)∗.

3.1. Improved simulated annealing algorithm

Simulated annealing (SA) is a metaheuristic technique for approximating the
global optimum of a given function in a large search space. It is an analogy with
thermodynamics, which incorporates a temperature parameter into the minimization
procedure. SA algorithm is capable of avoiding becoming trapped in local minima,
which explores parameter space at high temperatures and restricts exploration at
lower temperatures[11].

When the SA algorithm works, it is common to start with a random solution and
let the annealing process improve on that. If starting with a solution that has been
heuristically built, the algorithm has greater possibility to get the optimal solution
with less time. This paper adopts an improved SA algorithm to evaluate SOC, which
starts with an initial temperature (T ) and keep decreasing the temperature with a
decay parameter.

The �tness function at a state x (t) is de�ned as

ρ = ρ0

[
1− (1− β) (ξ + 1/2)

2
]
, (3)

where V (x(t))is the evaluated terminal voltage for a neighbor state x (t)??a is
the speci�ed distance between V (x(t)) and V (k)∗ when �tness Fit(x(t)) is 0.5.

At the tth iteration step, the improved algorithm always accepts the neighbour
state (x (t)) with greater �tness (Fit(x(t)) and accepts the one with less �tness
providing that the following equation is satis�ed,

e(−(Fit(x(t))−Fit(x(t−1)))/T ) ≥ rand (4)

whererand is a random value located in [0,1].
If the tolerance mechanism (5) is achieved, the improved SA algorithm outputs

the optimal state.
|s1 − s2| < tol, (5)

wheretol is the speci�ed tolerance, s1 and s2are the two accessed states with best
�tness. When (5) is satis�ed, it means there exists little change in the best states
for a certain period.

With the global search ability of improved SA, it helps to �nd an optimal value
closed to the real one based on the established LiFePO4 battery model (1).
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3.2. Improved SA based SOC evaluation method

Due to lack of knowledge about real cell state, typical SA based methods try to
�nd an optimal SOC satis�ed with the loss function (2) in a region [0,1], which costs
a large number of calculation resulting from the cooling process and the big search
range. To solve this problem further, this paper advances an improved SA based
SOC determination method.

At the initial steps without adequate state information, the improved method
employs SA to access SOC in a range [0,1] as the traditional one. When the speci�ed
maximum iteration ksis arrived, it turns to evaluate cell states in an abbreviated
range for reducing computation amount. The range is de�ned as{

SOC(k) ∈ [0, 1], k ≤ ks
SOC(k) ∈ [SOC0 − r, SOC0 + r], k > ks

(6)

whereks is a natural number, r is a small positive plus and SOC 0 is accessed by
the state space equations in (1),

SOC0=SOC(k − 1) +
−η(i(k − 1), T (k − 1))∆t

Cap
i(k − 1) (7)

Working under the limited search region (6), the traditional SA based method
costs less computation amount to access the optimal prediction of cell SOC. However,
it will bring big error when there exists large current disturbance and measurement
noise, and the error between two neighboring predicted available capacity is beyond
the allowed maximum di�erence. In this situation, this paper employs �rstorder low
pass �lter (8) to remove noise.

SOC(k) = α ∗ SOC(k) + (1− α) ∗ SOC(k − 1), α = 1/(tf ∗ f) (8)

wheretf is �lter time and f is sample frequency.

4. Results and discussion

To verify the advanced supervised SA based method for SOC estimation, ex-
periments with 3.2V/60AH LiFePO4 batteries at di�erent charging and discharging
process were performed.

This paper adopts a combined state space model [9] to describe the dynamic
characteristics of LiFePO4 battery. Based on the established cell model, the perfor-
mance of normal SA based method is shown in Fig.2. It shows that the estimated
SOC converges to the measured one quickly, but the predicted value is a �uctu-
ated one with prediction error over 10% in many cases. This situation originates in
measurement noise and not using the information in the state equation of (1).

Since that, this paper advances an improved SA based method to realize the SOC
determination. Based on normal SA algorithm, it employs the search limitation (6)
to accelerate search speed and �rstorder low pass �lter (8) to remove noise.
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Fig. 2. SOC determination performance using normal SA based method

Fig. 3. Performance of improved SA based method

Fig.3 presents the evaluation performance of the improved SA based method,
which signi�es that the evaluated SOC and terminal voltage converges to the mea-
sured ones quickly. This case stems from two cases. One is the accurate established
LiFePO4 model, and the other is the e�ective global search ability of improved SA.
When the available capacity of cell is 0.95, the search performance of the improved
SA based method is depicted in Fig.4, which demonstrates that the improved SA
helps to �nd optimal kids quickly with small iteration number even given a random
original value.

Fig. 4. The search performance of improved SA based method
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Table 1. The prediction performance comparison of cell SOC using di�erent methods

Methods Mean Variance Max

Improved
SA

1.62e-
02

1.27e-
04

3.92e-
02

Normal
SA

2.27e-
02

6.65e-
04

0.20

Table 1 presents the statistic list of the absolute SOC prediction error between
the normal SA based method and the improved one in pulse discharge process. It
demonstrates that the mean absolute SOC estimation error of the improved SA
based method is less than 2% and its prediction variance as little as 1.27e-04, which
is approximately one �fth of that of normal SA based method. With the use of
the improved method, the maximum prediction error reaches a value under 4%,
which declines more than one order of magnitude compared to the normal method.
Furthermore, the improved SA based method is little in�uenced by the unknown
initial state.

5. Conclusion

This paper proposes an improved SA based method to evaluate the available
capacity of LiFePO4 batteries. Here a combined state space model is adopted to
simulate cell dynamics, such as available capacity, transient response and polariza-
tion e�ect. Normal SA based method may access cell SOC fast resulting from its
e�ective global search mechanism, but it brings undesired �uctuant prediction with
error beyond 10% in some cases and requires a great amount of computation. Added
with the search limitation from state space equations and �rst order low pass �l-
ter, this paper advances an improved SA based method to access cell SOC. Finally
Results of lab tests on 18650 size cells, contrasted with traditional method, are pre-
sented. Results show that the proposed improved SA based method is capable of
evaluating cell SOC with great performance despite the errors from initialization,
current disturbance and measurement noise.
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